\rightarrow Go to desmos.com and click on Graphing Calculator:

Let's learn together.
 We're on a mission to help every student learn math and love learning math.

 Graphing Calculator

 Graphing Calculator}
\rightarrow Click on tool icon in upper right corner, then choose options for Circular Grid and Radians.
Be sure to size your graph window by adjusting the x -axis and y -axis to a ratio of 3:2 and/or adjust the viewing window to make it "square" so graphs aren't distorted. You can also zoom in and out.

\rightarrow You are ready to type in your equations! To get the Theta symbol, you must type in
$\mathbf{r}=$ theta and the calculator will automatically switch it to $\mathbf{r}=\theta$ for you.

TI-83+ and TI-84+ calculators:

*Set Mode to Pol (polar graphing)

*Select Radians

*Create "square" window by using a 3:2 ratio for x and y (so graphs aren't distorted)

* Adjust window as needed and/or select ZOOM, option ZoomFit
*Window for all graphs except for a spiral: $\theta \min 0$ $X \min -3 \quad Y \min -2$ max 3 scale 1 OR any $3: 2$ ratio $x=3,6,9,12, \ldots$ $y=2,4,6,8, \ldots$

Classifying polar graphs based on the given trig function and values of a and b :

SOME COMMON POLAR CURVES
Circles and Spiral
Limaçons, Cardioid
$r=a \pm b \sin \theta$
Orientation depends on
the trigonometric function
(sine or cosine) and the sign of b.
Roses
$r=a$ sin $n \theta$
$r=a$ cos $n \theta$
n-leaved if n is odd
$2 n$-leaved if n is even
Figure-eight-shaped

8.2 \#17-20, 24-34even, 40-44

 CHECK EVEN ANSWERS$y=-\frac{\sqrt{3}}{3} x$
$x^{2}+y^{2}=1$
cardioid
cardioid
circle
lemniscate
limacon
rose
rose
rose
spiral

HINT: \#20
Since $\theta=\frac{5 \pi}{6}$, it follows that $\tan \frac{5 \pi}{6}=-\frac{\sqrt{3}}{3}$
Therefore, $\tan \theta=-\frac{\sqrt{3}}{3}$
Now substitute $\frac{y}{x}$ for $\tan \theta$,
to get $\frac{y}{x}=-\frac{\sqrt{3}}{3}$
then rewrite in $\mathrm{y}=$ form
OR draw a triangle in Quad II since $\theta=\frac{5 \pi}{6}$
Label values for x and y using a special triangle and find the slope using $\frac{\text { rise }}{\text { run }}$ or $\frac{y}{x}$.

Use $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ to write an equation.

